skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lora, Juan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We document the propagation of annular modes—zonally symmetric patterns of variability—in Mars's atmosphere using a reanalysis dataset. Mars's Northern Annular Mode (MNAM) sees anomalies of zonal‐mean zonal wind emerge near the subtropics and migrate poleward with a period of 150 days, similarly to Earth's Southern Annular Mode. The mechanism of propagation involves the interaction of the two leading empirical orthogonal functions that define the MNAM. Moreover, the propagation encourages alternating bands of surface wind stress to migrate polewards with a 150‐day period. In addition, a 150‐day periodicity in anomalous column dust optical depth most likely emerges in response to extrema of the MNAM. The combination of the impact of the MNAM's internally forced periodicity on the surface wind stress and the seasonal cycle may contribute to the inter‐annual variability of global dust events, as suggested by a Monte Carlo estimate that correctly approximates the observed incidence of global dust events. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Billions of people rely upon groundwater for drinking water and agriculture, yet predicting how climate change may affect aquifer storage remains challenging. To gain insight beyond the short historical record, we reconstruct changes in groundwater levels in western North America during the last glacial termination (LGT, ~20 to 11 thousand years ago) using noble gas isotopes. Our reconstructions indicate remarkable stability of water table depth in a Pacific Northwest aquifer throughout the LGT despite increasing precipitation, closely matching independent Earth system model (ESM) simulations. In the American Southwest, ESM simulations and noble gas isotopes both suggest a pronounced LGT decline in water table depth in in response to decreasing precipitation, indicating distinct regional groundwater responses to climate. Despite the hydrologic simplicity of ESMs, their agreement with proxy reconstructions of past water table depth suggests that these models hold value in understanding groundwater dynamics and projecting large-scale aquifer responses to climate forcing. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  4. Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific. These changes are amplified with freshwater fluxes into the North Atlantic, indicating that North Atlantic cooling associated with weakened Atlantic Meridional Overturning Circulation (AMOC) is a key driver of HS1 climate in this region. As recent observations suggest potential weakening of AMOC, our identified connection between North Atlantic climate and northeast Pacific AR activity has implications for future western US hydroclimate. 
    more » « less
  5. Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific. These changes are amplified with freshwater fluxes into the North Atlantic, indicating that North Atlantic cooling associated with weakened Atlantic Meridional Overturning Circulation (AMOC) is a key driver of HS1 climate in this region. As recent observations suggest potential weakening of AMOC, our identified connection between North Atlantic climate and northeast Pacific AR activity has implications for future western US hydroclimate. 
    more » « less
  6. This dataset contains the atmospheric river catalogues and the associated precipitation and temperature data for the Preindustrial and Last Glacial Maximum CESM2 simulations presented in the GRL manuscript:  Atmospheric river contributions to ice sheet hydro climate at the Last Glacial Maximum. The atmospheric river catalogue files (zipped) are in netcdf format and organized by year. There are 100 years of data for both simulations.  The Preindustrial simulation catalogue begins in model year 41 and ends in model year 140.  The LGM simulation catalogue begins in model year 1 and ends in year 100. Each yearly file has a temporal resolution of 6 hours (1460 time steps each file) and a spatial resolution of 0.9° x 1.25° (the native resolution of the CESM simulation). A variable in the file called "ar_binary_tag" indicates whether an atmospheric river is present at each grid cell and each tilmestep: 1 indicates an atmospheric river is present; 0 indicates an atmospheric river is not present.  The precipitation and temperature files are 100-year annual or 100-year seasonal averages of atmospheric river precipitation/temperature. See the Methods section of the article for more details on the atmospheric river detection algorithm and precipitation/temperature calculations. Associated article abstract: Atmospheric rivers (ARs) are an important driver of surface mass balance over today’s Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22-27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest  ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM. 
    more » « less
  7. Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection. 
    more » « less